智科眼

请选择以下任意方式登录

已有帐号?

验证码登录

微信登录

忘记密码
未收到验证码?
注册

微信注册

智科眼: 双语看懂新科研
首页 中国TOP论文 Nature Science JACS AngewChem PRL AdvMater Lancet Cell EnglMed JAMA
Hypersonic Bose–Einstein condensates in accelerator rings
高超音速玻色 - 爱因斯坦凝聚 in 加速器环
Saurabh Pandey; Hector Mas; Giannis Drougakis; Premjith Thekkeppatt; Vasiliki Bolpasi; Georgios Vasilakis; Konstantinos Poulios; Wolf von Klitzing
  • Nature vol: issue: (2019) [全文下载] 扫码分享
  • 影响因子: 41.6 点击(424) 收藏(0) 评分(0)
    • 1
    • 2
    • 3
    • 4
    • 5
  • 综合科学
  • 一些最敏感和最精确的测量 - 例如惯性1,重力2和旋转3 - 基于物质波干涉测量法和自由落体原子云。为了获得非常高的灵敏度,询问时间必须非常长,因此实验装置需要非常高(在某些情况下达到10或甚至100米)或者实验必须在空间中以微重力进行4,5, 6,7。取消重力加速度(例如,在atomtronic circuit8,9和物质波导10中)预计将导致紧凑的装置具有延长的询问时间并因此增加灵敏度。在这里,我们通过在宏观距离上运输玻色 - 爱因斯坦凝聚体(BECs)来展示平滑和可控的物质波导。我们使用中性原子加速器环将BEC带到非常高的速度(声速的16倍),并将它们在磁性物质波导中传输15厘米,同时完全保持其内部相干性。由此产生的每个原子超过40,000个的高角动量(其中ħ是降低的普朗克常数)使得能够获得更高的量子霍尔状态Landau水平,以及实现的高超音速,结合我们以皮考威精度控制电位的能力,将促进超流体的研究,并产生隧道和超大原子的大范围运输方式11,12,13。相干物质波导有望在高度紧凑的设备中实现几秒钟的交互时间,并导致便携式导向原子干涉仪用于惯性导航和重力映射等应用。
  • Some of the most sensitive and precise measurements—for example, of inertia1, gravity2 and rotation3—are based on matter-wave interferometry with free-falling atomic clouds. To achieve very high sensitivities, the interrogation time has to be very long, and consequently the experimental apparatus needs to be very tall (in some cases reaching ten or even one hundred metres) or the experiments must be performed in microgravity in space4,5,6,7. Cancelling gravitational acceleration (for example, in atomtronic circuits8,9 and matter-wave guides10) is expected to result in compact devices with extended interrogation times and therefore increased sensitivity. Here we demonstrate smooth and controllable matter-wave guides by transporting Bose–Einstein condensates (BECs) over macroscopic distances. We use a neutral-atom accelerator ring to bring BECs to very high speeds (16 times their sound velocity) and transport them in a magnetic matter-wave guide for 15 centimetres while fully preserving their internal coherence. The resulting high angular momentum of more than 40,000ħ per atom (where ħ is the reduced Planck constant) gives access to the higher Landau levels of quantum Hall states, and the hypersonic velocities achieved, combined with our ability to control potentials with picokelvin precision, will facilitate the study of superfluidity and give rise to tunnelling and a large range of transport regimes of ultracold atoms11,12,13. Coherent matter-wave guides are expected to enable interaction times of several seconds in highly compact devices and lead to portable guided-atom interferometers for applications such as inertial navigation and gravity mapping.
  • 暂无相似论文